Model-coupled autoencoder for time series visualisation

نویسندگان

  • Nikolaos Gianniotis
  • Sven Dennis Kügler
  • Peter Tiño
  • Kai Lars Polsterer
چکیده

We present an approach for the visualisation of a set of time series that combines an echo state network with an autoencoder. For each time series in the dataset we train an echo state network, using a common and fixed reservoir of hidden neurons, and use the optimised readout weights as the new representation. Dimensionality reduction is then performed via an autoencoder on the readout weight representations. The crux of the work is to equip the autoencoder with a loss function that correctly interprets the reconstructed readout weights by associating them with a reconstruction error measured in the data space of sequences. This essentially amounts to measuring the predictive performance that the reconstructed readout weights exhibit on their corresponding sequences when plugged back into the echo state network with the same fixed reservoir. We demonstrate that the proposed visualisation framework can deal both with real valued sequences as well as binary sequences. We derive magnification factors in order to analyse distance preservations and distortions in the visualisation space. The versatility and advantages of the proposed method are demonstrated on datasets of time series that originate from diverse domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoencoding Time Series for Visualisation

We present an algorithm for the visualisation of time series. To that end we employ echo state networks to convert time series into a suitable vector representation which is capable of capturing the latent dynamics of the time series. Subsequently, the obtained vector representations are put through an autoencoder and the visualisation is constructed using the activations of the “bottleneck”. T...

متن کامل

Squeezed Convolutional Variational AutoEncoder for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Things

In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the ...

متن کامل

Learning compressed representations of blood samples time series with missing data

Clinical measurements collected over time are naturally represented as multivariate time series (MTS), which often contain missing data. An autoencoder can learn low dimensional vectorial representations of MTS that preserve important data characteristics, but cannot deal explicitly with missing data. In this work, we propose a new framework that combines an autoencoder with the Time series Clu...

متن کامل

Time Series Compression Based on Adaptive Piecewise Recurrent Autoencoder

Time series account for a large proportion of the data stored in financial, medical and scientific databases. The efficient storage of time series is important in practical applications. In this paper, we propose a novel lossy compression scheme for time series. The encoder and decoder are both composed by recurrent neural networks (RNN) such as long short-term memory (LSTM). There is an autoen...

متن کامل

Modeling Deep Temporal Dependencies with Recurrent "Grammar Cells"

We propose modeling time series by representing the transformations that take a frame at time t to a frame at time t+1. To this end we show how a bi-linear model of transformations, such as a gated autoencoder, can be turned into a recurrent network, by training it to predict future frames from the current one and the inferred transformation using backprop-through-time. We also show how stackin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 192  شماره 

صفحات  -

تاریخ انتشار 2016